

ТН ВЭД ЕАЭС 8531 10 300 0 ОКПД2 26.30.50.112

Соответствует ТР ЕАЭС о пожарной безопасности

Соответствует ТР ТС о взрывобезопасности

метка адресная пожарная искробезопасная «АМП – 2 Ех»

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ ПАСПОРТ

СПР.425513.010-01 РЭ

Настоящее руководство по эксплуатации предназначено для изучения принципа работы и правильной эксплуатации адресной метки пожарной искробезопасной «АМП-2 Ex».

1 ОПИСАНИЕ И РАБОТА ИЗДЕЛИЯ

1.1 НАЗНАЧЕНИЕ ИЗДЕЛИЯ

1.1.1 Адресная метка пожарная искробезопасная «**АМП-2 Ex**» (далее метка) предназначена для обеспечения искробезопасности двух шлейфов сигнализации (далее ШС), непрерывного контроля их состояния, электропитания и приема сигналов от извещателей в них, и передачи информации по двухпроводной интерфейсной адресной линии связи (далее АЛС) управляющему адресному прибору.

Метка «АМП-2 Ех» включается в систему ОПС компании «Рубеж» и подключается к адресным приборам приемно-контрольным и управления.

- 1.1.2 Метка «АМП-2 Ех» относится к связанному оборудованию (по ГОСТ 31610.0-2014) и имеет выходные искробезопасные электрические цепи уровня «іа» подгруппы ІІС. Метка имеет маркировку взрывозащиты для взрывоопасных газовых и пылевых сред [Ex ia Ga] IIС, [Ex ia Da] IIIС и [Ex ia Ma] I, соответствует требованиям ГОСТ 31610.0-2014, ГОСТ 31610.11-2014 и предназначена для установки вне взрывоопасных зон помещений и наружных установок, а также вне взрывоопасных зон рудников и шахт, опасных по рудничному газу.
- $1.1.3~\mathrm{B}$ шлейфы сигнализации метки «АМП-2 Ex» подключаются устанавливаемые во взрывоопасных зонах серийно выпускаемые извещатели, имеющие взрывозащиту вида «искробезопасная электрическая цепь i», сертифицированные соответствующим образом и удовлетворяющие параметрам максимально допустимой суммарной внешней емкости и индуктивности.

В том числе извещатели пожарные: тепловые ИП101 «Гранат(-МД)», пламени ИП329 «ИОЛИТ-Ех», дымовые ИП212 «Дымфикс», ручные ИП535 «Гарант(-М)» и другие подобные.

- 1.1.4 Электропитание метки осуществляется постоянным напряжением с номинальным значением **12B** или **24B** от двух независимых резервированных источников электропитания, либо от приемно-контрольного прибора имеющего выход напряжения питания.
 - 1.1.5 Степень зашиты оболочки метки **IP65** по ГОСТ 14254.
- $1.1.6~{
 m Met}$ ка устойчива к воздействию электромагнитных помех третьей степени жесткости по $\Gamma{
 m OCT}~{
 m P}~53325-2012.$
- 1.1.7 Метка предназначена для эксплуатации при температуре окружающего воздуха от **минус 40°C** до плюс 55°C и относительной влажности до 95% при температуре +40°C.

1.2 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

1.2.1 Количество контролируемых ШС – 2.

1.2.2 Параметры искробезопасных электрических цепей (по ГОСТ 31610.11-2014):

- максимальное выходное напряжение Uo, В	16,5 54 0,4
- максимальный выходной ток Іо, мА	54
- максимальная суммарная внешняя емкость Со, мкФ	0,4
- максимальная суммарная внешняя индуктивность Lo, мГн	8

1.2.3 Метка имеет два независимых входа питания.

Рабочий диапазон питающих напряжений на каждом из входов **от 10,0 В до 30,0 В**.

Потребляемый меткой ток зависит от напряжения питания и составляет:

	питание 1014B	питание 2028В
- в дежурном режиме – мА, не более	70	40
- в режиме тревоги (оба ШС) - мА, не более	100	55
- в режиме тревоги (оба ШС) - мА, не более СКаЧано С	ючи.ра	ρ

1.2.4 Метка осуществляет информационный обмен по двухпроводной АЛС.

АЛС гальванически развязана от источников питания метки.

Ток, потребляемый меткой от АЛС – не более 0,3 мА.

1.2.5 Напряжение ШС для питания активных (питаемых по шлейфу) извещателей в дежурном режиме составляет: **11,0** (± 0.7)**В**.

Максимальный ток в каждом ШС, потребляемый извещателями в дежурном режиме - 1,5 мА. Ток короткого замыкания в ШС ограничивается меткой на уровне 20 мА.

- 1.2.6 Метка сохраняет работоспособность при сопротивлении шлейфа сигнализации не более 0.22 кОм и при сопротивлении утечки между проводами не менее 50 кОм.
 - 1.2.7 Метка ОБЕСПЕЧИВАЕТ:
- контроль состояния каждого ШС по величине его сопротивления, выявление неисправности (КЗ или обрыв) и формирование извещений в зависимости от типа ШС в соответствии с таблицей 1.2.1.

Таблица 1.2.1 Виды формируемых извещений

Вид извещения	Состояние ШС	Сопротивление ШС типа «АКТИВ», кОм	Сопротивление ШС типа «ПАССИВ», кОм
НЕИСПРАВНОСТЬ	К3	менее 0,4	менее 0,3
HENCHI ABIIOCIB	Обрыв	более 9,0	более 10,0
НОРМА	Дежурный режим	от 3,1 до 8,2	от 0,35 до 0,95
внимание	Срабатывание одного извещателя	от 1,5 до 2,9	от 1,0 до 1,95
ТРЕВОГА	Срабатывание двух и более извещателей	от 0,42 до 1,4	от 2,1 до 9,2

- передачу по АЛС информации о текущем извещении и прием от контроллера команд управления конфигурацией;
- местную световую сигнализацию текущих извещений по каждому ШС в соответствии с таблицей 1.2.2.

Таблина 1.2.2

Вид извещения	НОРМА/НЕИСПР. (зеленый)	ТРЕВОГА (красный)
HOPMA	ГОРИТ непрерывно	выключен
НЕИСПРАВНОСТЬ	МИГАЕТ - 1Гц	выключен
ВНИМАНИЕ	выключен	МИГАЕТ - 0,5Гц
ТРЕВОГА	выключен	ГОРИТ непрерывно

- контроль и световую сигнализацию (в соответствии с таблицей 1.2.3) исправности питающего напряжения на каждом входе питания, а также передачу информации о состоянии питания по АЛС.

Таблица 1 2 3

Индикатор	Режим свечения	Состояние входа питания
ПИТ. 1 (зеленый)	ГОРИТ непрерывно	НОРМА на входе XT3 «ПИТ.1»
пит. г (зеленыи)	МИГАЕТ - 1Гц	Питание на XT3 «ПИТ.1» не в норме
ПИТ. 2 (зеленый)	ГОРИТ непрерывно	НОРМА на входе ХТЗ «ПИТ.2»
11111.2 (эсленыи)	МИГАЕТ - 1Гц	Питание на XT3 «ПИТ.2» не в норме

1.2.8 Метка отображает режим обмена данными по АЛС при помощи светового индикатора «СВЯЗЬ» (расположен возле клемм XT2 «АЛС» - см. поз.7 ПРИЛОЖЕНИЕ А) согласно таблине 1.2.4.

Таблина 124

Индикатор	Режим свечения	Режим обмена по АЛС
	вспышка 1 раз в 5 сек	Наличие обмена данными по АЛС
СВЯЗЬ	МИГАЕТ – 1Гц	Срабатывание извещателей в ШС
(красный)	выключен	Отсутствие обмена данными по АЛС
	ГОРИТ непрерывно	Не проходит «ТЕСТ» связи (см. п.1.2.9)

- 1.2.9 Метка имеет кнопку «ТЕСТ» (расположена в зазоре возле верхней боковой поверхности корпуса - см. поз.6 ПРИЛОЖЕНИЕ А), служащую датчиком закрытия крышки корпуса и используемую также при инсталляции для адресации и контроля метки.
 - 1.2.10 Средняя наработка на отказ метки не менее 40000 ч.
 - 1.2.11 Назначенный срок службы метки до списания не менее 10 лет.
 - 1.2.12 Габаритные размеры (Шх $Bx\Gamma$) не более 220х125х55мм.
 - 1.2.13 Масса не более 0.7 кг.

1.3 КОМПЛЕКТНОСТЬ

Комплект поставки соответствует таблице:

Наименование	Условное обозначение	Кол-во	Примечание
1. Адресная метка пожарная искробезопасная	СПР.425513.010 ТУ	1	
«АМП-2Ех»			
2. Руководство по эксплуатации. Паспорт.	СПР.425513.010-01 РЭ	1	

1.4 УСТРОЙСТВО И РАБОТА

Метка имеет пластмассовый герметичный корпус, состоящий из основания и прозрачной крышки (см. ПРИЛОЖЕНИЕ А - поз. 1, 2). На основании имеется четыре отверстия для крепления метки к стене.

К основанию крепятся печатная плата (поз.9) с расположенными на радиоэлементами и колодками для внешних соединений (поз.5, 8, 10). Снаружи печатная плата закрыта зашитным металлическим экраном и опломбирована заводской пломбой.

Ввод кабелей в корпус метки осуществляется через гермовводы (поз.4).

1.5 ОБЕСПЕЧЕНИЕ ИСКРОБЕЗОПАСНОСТИ

- СПР.425513.010 1.5.1 Метка «AMΠ-2 Ex» ТУ относится связанному электрооборудованию, имеет вид взрывозащиты – «Искробезопасная электрическая цепь i » и соответствуют требованиям ГОСТ 31610.0-2014, ГОСТ 31610.11-2014. Маркировка взрывозащиты : «[Ex ia Ga] IIC», «[Ex ia Da] IIIC», «[Ex ia Ma] I».
 - 1.5.2 В конструкции предусмотрены следующие меры и средства взрывозащиты:
- 1) конструктивное исполнение в соответствии с требованиями ГОСТ 31610.0-2014, ГОСТ 31610.11-2014, а именно:
- соответствующий выбор значений электрических зазоров и путей утечки между искробезопасными и связанными с ними цепями и искроопасными цепями;
- обеспечение неповреждаемости элементов искрозащиты и электрических зазоров и путей утечки при помощи заливки их эпоксидным компаундом;
- конструктивное исполнение разделительного трансформатора, исключающее попадание силового напряжения на искробезопасные и связанные с ними цепи;

- 2) использование барьера искрозащиты на основе стабилитронов и соответствующий выбор номиналов и мощности элементов барьера для обеспечения ограничения напряжения на искробезопасных и связанных с ними цепях:
- 3) использование токоограничивающих резисторов и соответствующий выбор их номиналов и мощности для обеспечения ограничения тока в искробезопасных цепях;
- 4) гальваническое разделение искробезопасных и связанных с ними цепей от внешних питающих и управляющих цепей.
- 1.5.3 Искробезопасность обеспечивается при соблюдении ограничений на максимально допустимые суммарные емкость и индуктивность в цепях ШС, указанные в п. 1.2.2.

1.6 МАРКИРОВКА И ПЛОМБИРОВАНИЕ

- 1.6.1 Маркировка метки соответствует требованиям комплекта конструкторской документации СПР.425513.010 и ГОСТ 26828.
 - 1.6.2 На лицевой стороне нанесены:
- наименование метки;
- товарные знаки предприятия-изготовителя и предприятия-поставщика;
- знаки соответствия (знаки обращения на рынке) и специальный знак «Ex»;
- надписи возле индикаторов, указывающие их назначение;
- возле колодки для подключения шлейфов сигнализации надпись на табличке:
- «ИСКРОБЕЗОПАСНЫЕ ЦЕПИ. Um:250B Io:54мA Uo:16,5B Lo:8мГн Co:0,4мкФ -40°C <Ta< +55°C»;
- 1.6.3 На наружной боковой поверхности метки имеется табличка (поз.3 ПРИЛОЖЕНИЕ А), на которой рельефным способом нанесены:
- товарные знаки предприятия-изготовителя и предприятия-поставщика;
- наименование изделия;
- знаки соответствия (знаки обращения на рынке) и специальный знак «Ex»;
- маркировка взрывозащиты «[Ex ia Ga] IIC» «[Ex ia Da] IIIC» «[Ex ia Ma] I», максимальное входное напряжение «Um:250В»;
- температура окружающей среды «-40°C <Ta< +55°C», степень защиты оболочки «IP65»;
- наименование органа по сертификации и номер действующего сертификата по взрывозащите;
- заводской номер и дата выпуска (квартал и две последние цифры года);
- версия программного обеспечения.
- 1.6.4 Корпус метки пломбируется монтажной организацией, производящей монтаж и техническое обслуживание.

1.7 УПАКОВЫВАНИЕ

- 1.7.1 Упаковывание меток производится в соответствии с чертежами предприятия изготовителя и ГОСТ 9.014 по варианту внутренней упаковки ВУ-5.
- 1.7.2 Метка индивидуально упаковывается в пакет из противоударной полиэтиленовой пленки, туда же вкладывается настоящее руководство.
 - 1.7.3 Упакованное изделие укладывается в транспортную тару картонную коробку.
- 1.7.4 К упакованному изделию прикладывается упаковочный лист, содержащий следующие сведения: а) наименование и обозначение изделия; б) количество и тип приложенной эксплуатационной документации; в) дату упаковки; г) подпись или штамп ответственного за упаковку.
- 1.7.5 Маркировка транспортной тары должна производиться в соответствии с ГОСТ 14192 и иметь манипуляционные знаки №1, №3, №11.

2 ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

2.1 УКАЗАНИЕ МЕР БЕЗОПАСНОСТИ

- 2.1.1 При монтаже, эксплуатации и техническом обслуживании метки необходимо соблюдать требования следующих нормативно-технических документов: ГОСТ ІЕС 60079-14-2013, ГОСТ 31610.17-2012, гл. 7.3. ПУЭ, ПТЭЭП, ПОТЭУ и настоящего документа.
- 2.1.2 По способу защиты человека от поражения электрическим током метка относится к классу II по ГОСТ 12.2.007.0.

2.2 ОБЕСПЕЧЕНИЕ ИСКРОБЕЗОПАСНОСТИ ПРИ МОНТАЖЕ И ЭКСПЛУАТАНИИ

2.2.1 При монтаже и эксплуатации меток должны соблюдаться требования следующих нормативных документов: ГОСТ ІЕС 60079-14-2013, гл. 7.3. ПУЭ; ПТЭЭП, ПОТЭУ и настоящего руководства.

ВНИМАНИЕ! Категорически ЗАПРЕЩАЕТСЯ устанавливать метку во взрывоопасных помешениях и зонах.

- 2.2.3 Перед монтажом метка должна быть осмотрена на отсутствие повреждений корпуса, контактов клеммных колодок, на наличие маркировки взрывозащиты и условных знаков искробезопасности.
 - 2.2.4 Монтаж производить при выключенном питании метки и подключаемых устройств.
- 2.2.5 Схема метки должна быть надежно заземлена при эксплуатации. Заземление должно производиться одножильным или многожильным медным проводом общим сечением 0,5...2,5 мм², который подключается к клемме заземления на плате метки (поз.11 ПРИЛОЖЕНИЯ А).
- 2.2.6 Суммарные емкость и индуктивность всех шлейфов сигнализации (с учетом включенного в эти шлейфы оборудования) не должны превышать величин, указанных в п. 1.2.2.
- 2.2.7 Кабели и провода как искробезопасных, так и искроопасных цепей, подключаемые к клеммным колодкам (поз.5, 8, 10 ПРИЛОЖЕНИЯ А) должны быть уплотнены (затянуты) гермовводами (поз.4 ПРИЛОЖЕНИЯ А) до их полного обжатия для обеспечения герметичности и во избежание их случайного выдергивания.

- ВНИМАНИЕ! 1) Запрещается включение в шлейф с искробезопасными извещателями, взрывоопасной **установленными** во зоне. извещателей - обычных (невзрывозащищенных) или с другим видом взрывозащиты (например, вида «d»). Такое подключение возможно через барьер УГИШ СПР.425513.008.
 - 2) Категорически запрещается подключение к искробезопасным цепям метки посторонних цепей при эксплуатации.
- 2.2.8 Приемка изделия после монтажа и его эксплуатация должны производиться в соответствии с требованиями ПТЭЭП и настоящего РЭ.

2.3 ПОРЯДОК УСТАНОВКИ

2.3.1 Установку метки производить с учетом удобства эксплуатации и обслуживания, на вертикальной поверхности из негорючих материалов.

Желательно исключить прямое попадание солнечных лучей на переднюю панель метки из-за возможного ухудшения видимости органов индикации.

- 2.3.2 Снять с метки крышку и, соблюдая осторожность, закрепить на стене основание корпуса, с установленной на нем платой. Разметка для крепления приведена в ПРИЛОЖЕНИИ А.
- 2.3.3 Подключить к метке внешнее заземление, питающие цепи, цепи АЛС в соответствии с ПРИЛОЖЕНИЕМ Б, с учетом требований п. 2.1.

Примечание: клеммные колодки метки позволяют полключать к каждому контакту провод

2.3.4 Подключить к метке шлейфы сигнализации, смонтированные согласно схемам, приведенным в ПРИЛОЖЕНИИ В для конкретных типов извещателей, соблюдая условия и ограничения, указанные в пункте 2.1.

Для монтажа ШС следует применять специальные коммутационные коробки для искробезопасных цепей (типа «**КСРВ-i**» СПР.687227.001 ТУ).

В шлейф сигнализации одновременно могут включаться либо только токопотребляющие (активные), либо только нетокопотребляющие (пассивные) извещатели.

Максимальное количество активных извещателей в ШС выбирается исходя из максимального суммарного тока потребления в дежурном режиме – не более 1,5мA, но не более 30 шт. извещателей со световой индикацией дежурного режима.

- 2.3.5 По окончании монтажа системы пожарной сигнализации следует:
- а) произвести конфигурирование метки для работы в системе;
- б) при помощи кнопки «ТЕСТ» убедиться в работе метки по приему тестового сигнала управляющим прибором.
- 2.3.6 После завершения монтажа закрыть метку крышкой и опломбировать один из крепежных винтов.

2.4 КОНФИГУРИРОВАНИЕ

Адрес метки задается с помощью программатора адресных устройств ПКУ-1 прот.R3 или с приемно-контрольного прибора по АЛС1, АЛС2, АЛСТ. Конфигурирование метки осуществляется с помощью прибора ППКОПУ «Рубеж-2ОП прот.R3» или программного обеспечения Firesec, подробно смотри руководство по эксплуатации программного обеспечения Firesec или ППКОПУ «Рубеж-2ОП прот.R3».

Для каждого логического устройства задается тип ШС: «АКТИВ» или «ПАССИВ».

3 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- 3.1 Техническое обслуживание метки должен проводить специально обученный персонал руководствуясь нормативно-техническими документами, указанными в п.2.1.1, в соответствии с требованиями ГОСТ 31610.17-2012.
 - 3.2 Виды и периодичность технического обслуживания указаны в табл.3.1.

Таблица 3.1

Вид технического обслуживания	Периодичность	Кто проводит
1. Плановое -профилактический осмотр	С периодичностью, установленной на объекте	Обслуживающий персонал
-технический осмотр	Не реже 1 раза в год	Специалист по техническому обслуживанию
2. Внеплановое	При возникновении неис-	То же
обслуживание	правностей, указанных в разделе 4 настоящего РЭ	

- 3.2.1 Профилактический осмотр включает следующие работы:
- проверка внешнего состояния метки, очистка от пыли;
- проверка надежности крепления метки, состояния внутреннего монтажа метки, надежности контактных соединений, в особенности заземляющего проводника.
 - 3.2.2 Технический осмотр включает следующие работы:
 - работы по профилактическому осмотру (см. п. 3.2.1);
- проверка работоспособности метки в составе системы противопожарной защиты по методике п.2.3.5 б).
- 3.3 При достижении предельного состояния, метка должна быть выведена из эксплуатации. К параметрам, определяющим предельное состояние метки, относятся: а)

потеря работоспособности метки; б) повреждение корпуса метки; в) истечение назначенного срока службы.

4 ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И МЕТОДЫ ИХ УСТРАНЕНИЯ

4.1 Перечень возможных неисправностей, которые допускается устранять силами потребителя, и способы их устранения приведены в таблице 4.1. Устранение неисправностей должно осуществляться персоналом, изучившим эксплуатационную документацию.

ВНИМАНИЕ! Изделие не подлежит ремонту у потребителя. В целях сохранения взрывозащищенности ремонт изделия должен производиться только на заводеизготовителе.

Таблина 4 1

Неисправность, внешнее проявление	Вероятная причина	Способы устранения
1.Метка не включается –	Неисправность в цепи подачи	Проверить цепь питания от БРП,
все светодиоды погашены.	питания к метке.	устранить неисправность.
	Неисправен блок резервного	Проверить выходное напряжение
	питания (БРП).	БРП, заменить БРП.
2.Метка не становится в	Неисправен извещатель.	Проверить и заменить неисправ-
дежурный режим		ный извещатель.
	Неисправность линии ШС	Проверить сопротивление ШС,
		устранить неисправность.
3. Индикатор «СВЯЗЬ»	Нет питания метки или нет	Восстановить питание, восста-
не мигает	связи с контроллером	новить связь.
4. В режиме «ТЕСТ» про-	Метка отсутствует в конфигу-	Произвести конфигурирование
должительное непрерыв-	рации прибора	прибора
ное свечение индикатора		
«СВЯЗЬ»		

4.2 Критическим отказом считается потеря работоспособности метки, повреждение его корпуса.

К возможным ошибкам персонала (пользователя), приводящим к аварийным режимам работы метки, относятся: а) неправильное подключение метки; б) неправильная установка метки по месту эксплуатации; в) несоблюдение сроков технического обслуживания.

Для предотвращения возможных ошибок персонала, приводящих к аварийным режимам работы, при монтаже и эксплуатации метки следует неукоснительно руководствоваться разделами 2, 3 настоящего РЭ.

5 ТРАНСПОРТИРОВАНИЕ, ХРАНЕНИЕ И УТИЛИЗАЦИЯ

- 5.1 Метка в упаковке предприятия-изготовителя транспортируется всеми видами транспорта на любые расстояния с соблюдением требований действующих нормативных документов.
- 5.2 Условия транспортирования меток должны соответствовать условиям хранения 5 по ΓΟCT 15150.
- 5.3 Хранение метки в упаковке для транспортирования должно соответствовать условиям хранения 1 по ГОСТ 15150. Воздух в помещении для хранения метки не должен содержать паров кислот и щелочей, а также газов, вызывающих коррозию.
 - 5.4 Срок хранения метки в упаковке изготовителя без переконсервации не более 2 лет.
- 5.5 Метка и её составные части не содержат компонентов и веществ, требующих особых Утилизация осуществляется в порядке, утилизации. предусмотренном эксплуатирующей организацией. Т≣ХКЛЮЧИ.рф Скачано

6 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

- 6.1 Предприятие-изготовитель гарантирует соответствие метки требованиям технических условий СПР.425513.010 ТУ при соблюдении потребителем условий эксплуатации, транспортирования и хранения.
 - 6.2 Гарантийный срок эксплуатации 5 лет с момента изготовления.

ООО «СПЕЦПРИБОР»,

420088, г. Казань, ул. 1-я Владимирская, 108

тел.: (843)207-00-66

E-mail: info@specpribor.ru http://www.specpribor.ru

ООО «ТД «Рубеж»»,

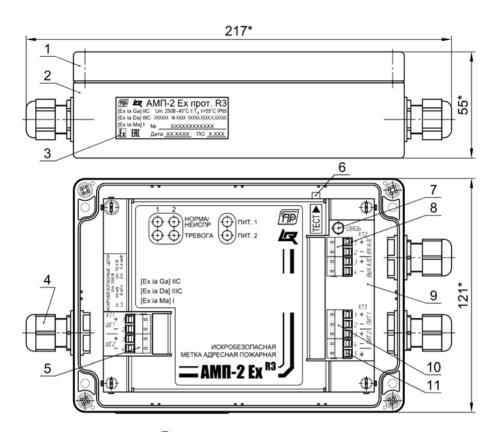
410056, г.Саратов, ул. Ульяновская, 28 тел.: (8452) 222-888, 222-012, 228-761

E-mail: td rubezh@rubezh.ru

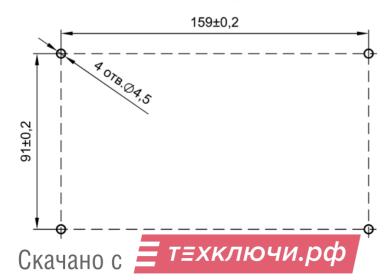
http://td.rubezh.ru/

_	CDI	THE STREET	TET	CTDO	\mathbf{a}	TIDII	177	TTCT.
-/	CDH	дете	./ID	CTBO	v	пги	.LIV	$\mathbf{I}\mathbf{\Lambda}\mathbf{\Gamma}$

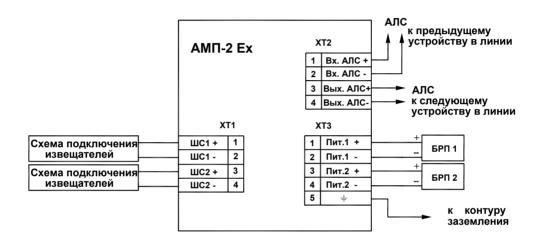
			заводской номер
Адресная метка пожарная искроб	езопасная	«АМП-2 Ex»	
соответствует техническим условиям	СПР.425513	3.010 ТУ и призна	ана годной к эксплуатации.
Да	та выпуска		
М.П.			
]	Начальник ГТК	
8 СВЕДЕНИЯ ОБ УПАКОВЫВ	зании		
Адресная метка пожарная искроб на предприятии-изготовителе согласно			
Дата упаковывания			
Упаковывание произвел			


9 СВЕДЕНИЯ О РЕКЛАМАЦИЯХ

При обнаружении заводских дефектов или отказе метки в течение гарантийного срока потребителем должен быть составлен рекламационный акт, с которым изделие направляется предприятию-изготовителю с обязательным приложением паспорта.


ВНИМАНИЕ! Без приложения настоящего документа и при отсутствии рекламационного акта претензии не принимаются.

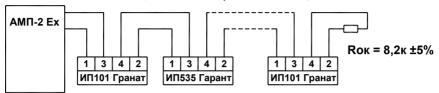
приложение а



Разметка для крепления

приложение б

Схема внешних подключений



приложение в

Схемы подключения извещателей

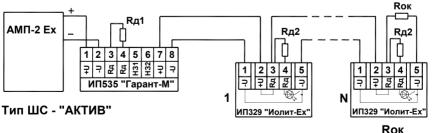
Схема подключения извещателей ИП101 "Гранат", ИП535 "Гарант"

число извещателей ИП101"Гранат" - 2...20 шт., ИП535 - 1...30 шт.

Тип ШС - "АКТИВ"

Схема подключения ИП101 "Гранат-МД", ИП212 "Дымфикс"

число извещателей 2...20 шт.



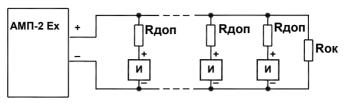
 $Rok = 8.2k \pm 5\%$

Rд = 2,0к ±5% (из комплекта поставки извещателей)

Схема подключения ИП535 "Гарант - М", ИП329 "ИОЛИТ (-Ex)"

число извещателей ИП535"Гарант-М" - 1...30 шт., ИП329 "ИОЛИТ-(Ex)" - N= 1...5шт.

Rд1 = 1,0к ±5% (из комплекта поставки ИП535 "Гарант-М")


Rд2 = 2,2к ±5% (из комплекта поставки ИП329 "Иолит(-Ex)")

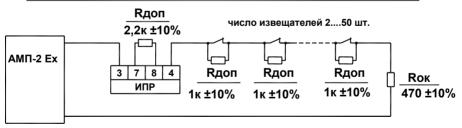
8,2к ±5% при N= 1...3 12к ±5% при N= 4...5

ПРИЛОЖЕНИЕ В (продолжение)

Общая схема подключения активных извещателей

Тип ШС - "АКТИВ"

Максимальный суммарный ток потребления всех извещателей в шлейфе - не более **1,5 мА**. Максимальное количество извещателей в шлейфе (но см. ограничение п. 2.2.4):


$$N_{_{MAKC}} = \frac{1,5}{I_{_{U380W}}}$$
 , где $I_{_{U380W}}$ - ток потребления (в мА) одного извещателя в дежурном режиме,

Rок, кОм	Суммарный потребляемый извещателями ток в дежурном режиме, мА
8,2	0 1,0
10,0	1,0 1,5

Условия распознавания двойного срабатывания:

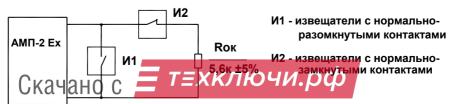

- 1) работоспособность извещателя при напряжении в ШС = 6...7 В;
- 2) установка Родоп = 0...3кОм (в зависимости от схемы извещателя).

Схема подключения пассивных пожарных извещателей

Тип ШС - "ПАССИВ"

Схема подключения охранных контактных извещателей

